

User Guide

MTCom

Atlas Copco Industrial Technique AB

9836 6568 01

Software release 1.0.3.1

2011-02

Edition 1.2

9836 6568 01 1 (26)

Contents

INTRODUCTION ... 2
Changes from G4Com .. 2
Revision history .. 2

INSTALLATION .. 3
Before installation ... 3
Installing MTCom .. 3
Starting and stopping MTCom ... 3
Troubleshooting .. 3

USB COMMUNICATION ... 4
Channels .. 4
Data format .. 4

PROGRAMMING INTERFACE ... 5

MTCom API functions ... 5
MT_Init .. 6
MT_GetVersion .. 6
MT_GetDllVersion ... 6
MT_GetDeviceList ... 6
MT_GetDeviceInfo ... 7
MT_Open .. 8
MT_Close ... 8
MT_Clear .. 9
MT_WriteSet ... 9
MT_ReadSet ... 9
MT_GetSummary ... 10
MT_GetNoTraceChannels .. 10
MT_GetTraceInfo ... 11
MT_GetTracePoints .. 12
MT_GetOutput ... 12
MT_GetLastError ... 13

G4Com API (deprecated) .. 14

MTCom API examples ... 14
Initiating communication .. 14
Writing and reading datasets ... 15
Retrieving summary protocol data .. 16
Retrieving trace data ... 17
MTCom interface class ... 18
MTCom utility functions ... 21

2 (26) 9836 6568 01

Introduction
MTCom is a communication server used for communicating with MicroTorque devices over USB. It
provides a unified programming interface and the possibility for several applications to communicate
with one single device at the same time. MTCom runs as a windows service and supports 16
simultaneous devices to be connected to a computer at any one time.

MTCom is backwards compatible with G4Com and its DLL can be used as a drop in replacement for
applications that use the old G4Com API. A program that previously used G4Com can be made to
work with MTCom without the need to recompile it. To make this work the MTCom.dll will need to be
named g4com.dll and replace the existing g4com.dll that was installed with the application.

Changes from G4Com

MTCom was written as a replacement for G4Com and contains several improvements to increase
stability of the communication and to make it easier for applications to communicate with MicroTorque
devices. The main highlights of MTCom are listed below.

 Backwards compatible with G4Com. Can work as a drop in replacement for G4Com.

 Runs as a windows service so that communication will not be disturbed if the system tray
application is closed.

 General improvements in stability and error handling.

 Summary protocol is marked with a sequence number so that an application can easier
identify results of different joints.

 Support for ACTA-MT4 trace protocol.

 New API provides more control and better integration with C#.

Revision history

Edition Date Comment

1.0 2010-09-16 First revision
1.1 2010-09-20 Updated for version 1.0.2.2
1.2 2011-02-16 Updated for version 1.0.3.1

9836 6568 01 3 (26)

Installation

Before installation
Before installing MTCom the user should make sure that any instances of G4Com are shutdown.
MTCom and G4Com can not run simultaneously on one computer since they both try to connect to the
same USB devices. G4Com does not need to be uninstalled but if it is started when the MTCom
service is already running it will not be able to see any devices.

Installing MTCom
Installation of MTCom is performed by the supplied installation package. By default MTCom will be

installed in “C:\Program files\Atlas Copco Tools AB\MTCom”.

The following files will be placed in the installation folder:

 MTComSvc.exe – The MTCom server that runs as a windows service.

 MTCom.dll – The MTCom API DLL that provides the communication interface for all
applications that communicate with MicroTorque devices. This file can be renamed to
g4com.dll and placed in the folder of an application that previously used G4Com.

 MTComMonitor.exe – Monitoring application that lists connected devices and provides
functionality to start and stop the MTCom service.

When the installation is complete the MTCom service and monitoring application is automatically
started by the installtion process. MTCom Monitor will reside in Windows system tray. The MTCom
Monitor main window can be opened by clicking the icon in the system tray. The main window of
MTCom will display a list of connected devices similar to G4Com.

Starting and stopping MTCom
The MTCom service can be started and stopped from within the
MTCom Monitor application. The service should however never be
stopped unless the intention is to use G4Com for a time. Stopping
the service will stop any ongoing communication with MicroTorque
devices.

To stop the service, choose “File -> Stop service” from the menu.

To start the service, choose “File -> Start service” from the menu.

The current status of the MTCom service is displayed in the status
bar of the main window.

Troubleshooting

Problem Possible causes

Unable to start the MTCom service.
The USB driver was not installed correctly. Connect a
MicroTorque device and verify that the driver is installed
then try starting the service again.

No devices are visible in MTCom
Monitor even though they are
connected to the computer.

Make sure that there isn’t an instance of G4Com running
on the computer. MTCom and G4Com can not run at the
same time.

Unable to start or stop the MTCom
service from within MTCom Monitor.

For MTCom Monitor to be able to start and stop services it
needs to run with administrative rights. The remaining
functionality of the program will work for all users.

4 (26) 9836 6568 01

USB communication

Channels
The MTCom server can communicate with up to 16 MicroTorque devices at the same time. For each
device connected it will separate the communication into 16 channels on which custom applications
can communicate. Some of these channels are reserved for special purposes like protocol output and
trace data, others are for general use.

Channel Purpose

0 General purpose.

1 General purpose.

2 General purpose.

3 General purpose.

4 General purpose.

5 General purpose.

6 General purpose.

7 General purpose.

8 General purpose.

9 General purpose.

10 Reserved, do not use for custom applications.

11 Reserved, do not use for custom applications.

12 Reserved, do not use for custom applications.

13 Summary data protocol output.

14 Summary data protocol output.

15 Trace data protocol output.

Data format

All datasets on general purpose channels have the following structure:

STX Channel no. Data Checksum High Checksum Low ETX

Field Description

STX ASCII control character 0x02

Channel no. Channel number data was sent on. ASCII hex character (0-9, A-F)

Data. The actual data of the dataset.

Checksum High High nibble of the checksum. ASCII hex character (0-9, A-F)

Checksum Low Low nibble of the checksum. ASCII hex character (0-9, A-F)

ETX ASCII control character 0x03

The checksum is calculated as an 8-bit sum (without carry) of the channel no. and data fields.

Example:
 STX 0 P G 0 7 2 E ETX

 0x02 0x30 0x50 0x47 0x30 0x37 0x32 0x45 0x03

In this example the checksum is the sum of (0x30 + 0x50 + 0x47 + 0x30 + 0x37) = 0x12E. If the
checksum is higher than 0xFF only the 8 least significant bits are used. In the example above we use
0x2E. This checksum is then written as an ASCII representation in the dataset, characters 2 and E.

9836 6568 01 5 (26)

Programming interface

MTCom API functions

The following functions are exported from MTCom.dll. These functions are further explained later in
this document.

Function Short description

MT_Init Initializes the MTCom DLL. Must be called before any other function.

MT_GetVersion Returns the version string of MTCom service.

MT_GetDllVersion Returns the version string of MTCom.dll

MT_GetDeviceList Returns a semicolon-separated list of connected devices.

MT_GetDeviceInfo Returns the connection status and device type of a device.

MT_Open Opens a connection to a device.

MT_Close Closes a connection to a device.

MT_Clear Clears any existing datasets of a given device and channel.

MT_WriteSet Sends a dataset to a connected device.

MT_ReadSet Retrieves a dataset from a connected device.

MT_GetSummary Retrieves the summary of the last completed joint.

MT_GetNoTraceChannels Returns the number of trace channels present on the device.

MT_GetTraceInfo Returns information of a specified device and trace channel.

MT_GetTracePoints Returns trace points of a specified device and trace channel.

MT_GetOutput Returns the state of the internal outputs of a given device.

MT_GetLastError Returns the error code of the last function that failed.

All functions listed above return TRUE if successful and FALSE on failure unless otherwise specified. If

a function fails MT_GetLastError will return a more detailed error code.

6 (26) 9836 6568 01

MT_Init

This function initializes the MTCom DLL and must be called before any other funcions of the MTCom
API are used.

C++ declaration:

C# declaration:

MT_GetVersion

This function is used to retrieve the version number of the running MTCom service. If the function call
succeeds oVersion will contain a null-terminated string of the version number.

C++ declaration:

C# declaration:

MT_GetDllVersion

This function is used to retrieve the version number of the MTCom DLL. If the function call succeeds
oVersion will contain a null-terminated string of the version number.

C++ declaration:

C# declaration:

MT_GetDeviceList

This function is used to retrieve the serial numbers of the current connected MicroTorque devices. If
the function call succeeds oDevices will contain a semicolon separated list of serial numbers and

oDeviceCount will contain the number of devices connected.

C++ declaration:

C# declaration:

extern ”C” BOOL __stdcall MT_Init(void);

[DllImport("MTCom.dll", EntryPoint = "MT_Init")]

public static extern bool MT_Init();

extern ”C” BOOL __stdcall MT_GetVersion(char * oVersion);

[DllImport("MTCom.dll", EntryPoint = "MT_GetVersion")]

public static extern bool MT_GetVersion(

 [MarshalAs(UnmanagedType.LPStr)] StringBuilder version);

extern ”C” BOOL __stdcall MT_GetDllVersion(char * oVersion);

[DllImport("MTCom.dll", EntryPoint = "MT_GetDllVersion")]

public static extern bool MT_GetDllVersion(

 [MarshalAs(UnmanagedType.LPStr)] StringBuilder version);

extern ”C” BOOL __stdcall MT_GetDeviceList(char * oDevices,

 int * oDeviceCount);

[DllImport("MTCom.dll", EntryPoint = "MT_GetDeviceList")]

public static extern bool MT_GetDeviceList(

 [MarshalAs(UnmanagedType.LPStr)] StringBuilder devices,

 out int deviceCount);

9836 6568 01 7 (26)

MT_GetDeviceInfo

This function is used to retrieve information of a device with a given serial number. If the function call
succeeds oDeviceStatus will hold the connection status and oDeviceType will the type of device

that is connected. Refer to the following tables for a list of valid values of both parameters.

Device Status Description

0 Device with given serial number is not connected.

1 Device is present on the USB but connection to it has not
been established yet.

2 Device is connected and MTCom has initiated handshake.

3 Device is ready.

Device Type Description

0 MTCom has not yet identified the device.

1 ‘Microtest MC’.

2 ‘MicroTorque Controller G4’.

3 ‘MicroTorque ACTA MT4’

4 ‘MTF400 Basic’

5 ‘MTF400 Advanced’

C++ declaration:

enum MT_DeviceStatus

{

 MT_DEVICE_NOT_FOUND = 0,

 MT_DEVICE_PRESENT,

 MT_DEVICE_CONNECTED,

 MT_DEVICE_READY

};

enum MT_DeviceType

{

 MT_DEVICE_UNKNOWN = 0,

 MT_DEVICE_MICROTEST_MC,

 MT_DEVICE_MICROTORQUE_G4,

 MT_DEVICE_ACTA_MT4,

 MT_DEVICE_MTF400_BASIC,

 MT_DEVICE_MTF400_ADVANCED

};

extern ”C” BOOL __stdcall MT_GetDeviceInfo(const char * serial,

 int * oDeviceStatus, int * oDeviceType);

8 (26) 9836 6568 01

C# declaration:

MT_Open

This function opens a connection to a device with a given serial number and returns the handle to the
opened device. If it could not open a connection to the device it will return INVALID_HANDLE_VALUE.

(The reserved parameter is reserved for future use and should be set to 0).

C++ declaration:

C# declaration:

MT_Close
This function closes an open connection to a device, it does not return anything.

C++ declaration:

C# declaration:

public enum DeviceStatus : int

{

 MT_DEVICE_NOT_FOUND = 0,

 MT_DEVICE_PRESENT,

 MT_DEVICE_CONNECTED,

 MT_DEVICE_READY

}

public enum DeviceType : int

{

 MT_DEVICE_UNKNOWN = 0,

 MT_DEVICE_MICROTEST_MC,

 MT_DEVICE_MICROTORQUE_G4,

 MT_DEVICE_ACTA_MT4,

 MT_DEVICE_MTF400_BASIC,

 MT_DEVICE_MTF400_ADVANCED

}

[DllImport("MTCom.dll", EntryPoint = "MT_GetDeviceInfo")]

public static extern bool MT_GetDeviceInfo(

 [MarshalAs(UnmanagedType.LPStr)] string serial,

 [MarshalAs(UnmanagedType.I4)] out DeviceStatus deviceStatus,

 [MarshalAs(UnmanagedType.I4)] out DeviceType deviceType);

#define INVALID_HANDLE_VALUE ((HANDLE)(LONG_PTR)-1)

extern ”C” HANDLE __stdcall MT_Open(const char *serial, int reserved);

public readonly static IntPtr INVALID_HANDLE_VALUE = new IntPtr(-1);

[DllImport("MTCom.dll", EntryPoint = "MT_Open")]

public static extern IntPtr MT_Open(

 [MarshalAs(UnmanagedType.LPStr)] string serial, int reserved);

extern ”C” void __stdcall MT_Close(HANDLE * client);

[DllImport("MTCom.dll", EntryPoint = "MT_Close")]

public static extern IntPtr MT_Close(ref IntPtr client);

9836 6568 01 9 (26)

MT_Clear

This function clears any previously received datasets on a specified channel. It can be used to clear
summary data and summary sequence number for a device if called with channel number 13 or 14.

C++ declaration:

C# declaration:

MT_WriteSet
This function writes a dataset to a device. The application can chose to build entire datasets including
control characters, channel number and checksum and pass it to MT_WriteSet or it can chose to

only send the command and let MTCom construct the remaining parts of the dataset.

C++ declaration:

C# declaration:

MT_ReadSet

This funcion reads a dataset from a device. The function will only indicate failure (return FALSE) if an

actual error occurred. If it timed out waiting for a dataset it will return TRUE and set oBytesRead to

zero.

The byte array passed as oData must be greater or equal to 4kb in size.

C++ declaration:

C# declaration:

[DllImport("MTCom.dll", EntryPoint = "MT_WriteSet")]

public static extern bool MT_WriteSet(IntPtr client, int channel,

 [MarshalAs(UnmanagedType.LPArray)] byte[] dataset, int noBytes);

extern ”C” BOOL __stdcall MT_WriteSet(HANDLE client, int channel,

 const char * data, int size);

extern ”C” BOOL __stdcall MT_Clear(HANDLE client, int channel);

[DllImport("MTCom.dll", EntryPoint = "MT_Clear")]

public static extern bool MT_Clear(IntPtr client, int channel);

[DllImport("MTCom.dll", EntryPoint = "MT_ReadSet")]

public static extern bool MT_ReadSet(IntPtr client, int channel,

 [MarshalAs(UnmanagedType.LPArray)] [Out] byte[] buffer,

 [MarshalAs(UnmanagedType.I4)] out int noBytes, int timeOut);

extern ”C” BOOL __stdcall MT_ReadSet(HANDLE client, int channel,

 char * oData, int *oBytesRead, int timeout);

10 (26) 9836 6568 01

MT_GetSummary

This function retrieves the last summary (result of the last joint) as received by MTCom. Summary
protocol data is automatically sent on channel 13 and 14 by the MicroTorque device when a joint is
completed. Since this function simply returns the last summary as received by MTCom, an application
that relies on this function to retrieve summary data should keep track of the sequence number to
make sure that the correct summary was retrieved. See the example in the next chapter.

The byte array passed as oSummary must be equal or greater to 1kb in size.

C++ declaration:

C# declaration:

MT_GetNoTraceChannels
This function is used to get the maximum number of trace channels of a MicroTorque device.

C++ declaration:

C# declaration:

extern ”C” BOOL __stdcall MT_GetSummary(HANDLE client, char *oSummary,

 int *oNoBytes, int *oSequenceNo);

[DllImport("MTCom.dll", EntryPoint = "MT_GetSummary")]

public static extern bool MT_GetSummary(IntPtr client,

 [MarshalAs(UnmanagedType.LPArray)] [Out] byte[] summary,

 [MarshalAs(UnmanagedType.I4)] out int noBytes,

 [MarshalAs(UnmanagedType.I4)] out int sequenceNo);

extern ”C” BOOL __stdcall MT_GetNoTraceChannels(HANDLE client,

 int * oNoTraceChannels);

[DllImport("MTCom.dll", EntryPoint = "MT_GetNoTraceChannels")]

public static extern bool MT_GetNoTraceChannels(IntPtr client,

 [MarshalAs(UnmanagedType.I4)] out int noTraceChannels);

9836 6568 01 11 (26)

MT_GetTraceInfo

This function is used to get information about the trace of the last joint that was buffered in MTCom. It
will retrieve the number of points in the trace, its sample rate (in samples/sec) and the torque unit
used.

C++ declaration:

C# declaration:

enum MT_Unit

{

 MTU_mNm = 0,

 MTU_cNm,

 MTU_Nm,

 MTU_mN,

 MTU_N,

 MTU_kN,

 MTU_inlbf,

 MTU_lbf,

 MTU_inozf,

 MTU_gcm,

 MTU_kgm,

 MTU_ftlbf,

 MTU_ozf,

 MTU_kgf,

 MTU_gf,

 MTU_INVALID = -1,

};

extern ”C” BOOL __stdcall MT_GetTraceInfo(HANDLE client, int traceChannel,

 int * oNoPoints, int * oSampleRate, int * oTorqueUnit);

public enum Unit : int

{

 MTU_mNm = 0,

 MTU_cNm,

 MTU_Nm,

 MTU_mN,

 MTU_N,

 MTU_kN,

 MTU_inlbf,

 MTU_lbf,

 MTU_inozf,

 MTU_gcm,

 MTU_kgm,

 MTU_ftlbf,

 MTU_ozf,

 MTU_kgf,

 MTU_gf,

 MTU_INVALID = -1,

}

[DllImport("MTCom.dll", EntryPoint = "MT_GetTraceInfo")]

public static extern bool MT_GetTraceInfo(IntPtr client, int traceChannel,

 [MarshalAs(UnmanagedType.I4)] out int noPoints,

 [MarshalAs(UnmanagedType.I4)] out int sampleRate,

 [MarshalAs(UnmanagedType.I4)] out int torqueUnit);

12 (26) 9836 6568 01

MT_GetTracePoints

This function retrieves the actual trace points of the currently buffered trace in MTCom.
MT_GetTraceInfo should be called first to get the number of points available. The function can be

used to retrieve the entire trace or just parts of it depending on the parameters passed to it.

The variable traceChannel indicates which channel MTCom should retrieve trace data for. Usually

this is channel 0 (which is the driver in the case of G4 or the first sensor in the case of ACTA-MT4).

The array of MT_TracePoint structures passed as oTracePoints should be able to hold the

number of points passed in the variable maxPoints.

The integer startPoint indicates the point into the trace of where the MTCom should begin copying

the trace data.

C++ declaration:

C# declaration:

MT_GetOutput

This returns the state of the internal outputs of a device. The retrieved value is a bit mask and has
different meaning depending on which type of device that is queried.

Output MT-G4 & MTF400 ACTA-MT4

Bit 0 Current state of OK signal. Last measurement was High.

Bit 1 Current state of BUSY signal. Last measurement was Low.

Bit 2 Not used. Last measurement was OK.

Bit 3 Not used. Reserved for future use.

C++ declaration:

C# declaration:

[DllImport("MTCom.dll", EntryPoint = "MT_GetTracePoints")]

public static extern bool MT_GetTracePoints(IntPtr client,

 int traceChannel,

 [MarshalAs(UnmanagedType.LPArray)] [Out] TracePoint[] points,

 int startPoint, int maxPoints,

 [MarshalAs(UnmanagedType.I4)] out int noPoints);

extern ”C” BOOL __stdcall MT_GetTracePoints(HANDLE client,

 int traceChannel, struct MT_TracePoint * oTracePoints,

 int startPoint, int maxPoints, int * oPointsReceived);

[DllImport("MTCom.dll", EntryPoint = "MT_GetOutput")]

public static extern bool MT_GetOutput(IntPtr client,

 [MarshalAs(UnmanagedType.I4)] out int output);

extern ”C” BOOL __stdcall MT_GetOutput(HANDLE client, int *oOutput);

9836 6568 01 13 (26)

MT_GetLastError

This function returns the error code of the last function that failed. It can be called after any MTCom
API function failed to get more detailed information about what went wrong.

C++ declaration:

C# declaration:

enum MT_ErrorCode

{

 MT_OK = 0,

 MT_ERR_INVALID_VERSION = -1,

 MT_ERR_INVALID_PARAMETER = -2,

 MT_ERR_INVALID_DATA = -3,

 MT_ERR_INVALID_CHECKSUM = -4,

 MT_ERR_CONNECTION_ERROR = -5,

 MT_ERR_INVALID_MESSAGE_ID = -6,

 MT_ERR_MUTEX_TIMEOUT = -7,

 MT_ERR_PIPE_READ_FAILED = -8,

 MT_ERR_PIPE_WRITE_FAILED = -9,

 MT_ERR_USB_READ_FAILED = -10,

 MT_ERR_USB_WRITE_FAILED = -11,

};

extern ”C” int __stdcall MT_GetLastError(void);

public enum ErrorCode : int

{

 MT_OK = 0,

 MT_ERR_INVALID_VERSION = -1,

 MT_ERR_INVALID_PARAMETER = -2,

 MT_ERR_INVALID_DATA = -3,

 MT_ERR_INVALID_CHECKSUM = -4,

 MT_ERR_CONNECTION_ERROR = -5,

 MT_ERR_INVALID_MESSAGE_ID = -6,

 MT_ERR_MUTEX_TIMEOUT = -7,

 MT_ERR_PIPE_READ_FAILED = -8,

 MT_ERR_PIPE_WRITE_FAILED = -9,

 MT_ERR_USB_READ_FAILED = -10,

 MT_ERR_USB_WRITE_FAILED = -11,

}

[DllImport("MTCom.dll", EntryPoint = "MT_GetLastError")]

public static extern ErrorCode MT_GetLastError();

14 (26) 9836 6568 01

G4Com API (deprecated)
The MTCom DLL is backwards compatible with the G4Com DLL and can be used as a drop in
replacement for applications that use the old G4Com API. These functions are however deprecated
and should not be used in newly developed software. They are included here for reference only.

This section is not yet complete. Refer to the MicroTorque G4 Controller communication protocol, user
guide for a list of available functions.

MTCom API examples
MTCom can be used from any language capable of calling external DLL functions. The examples in
this document are written in C#.

Initiating communication

This is an example on how to initialize MTCom and how to open a connection to a MicroTorque
device. It is written in C# using the MTCom interface class that can be found in this document.

// Initialize MTCom DLL

if (MTCom.Init())

{

 string serialNo = "127CA793";

 // Open connection to a device using a known serial number.

 IntPtr client = MTCom.Open(serial, 0);

 if (client != MTCom.INVALID_HANDLE_VALUE)

 {

 // Success, we are now connected to the device.

 // ...

 // Close connection to the device when finished with it.

 MTCom.Close(client);

 }

 else

 {

 // Display error code.

 Console.Write("MTCom.Open failed w/err: {0}.",

 MTCom.GetLastError());

 }

}

9836 6568 01 15 (26)

Writing and reading datasets

This is an example on how to write and read datasets to and from a MicroTorque device. It is written in
C# using the MTCom interface class that can be found in this document.

// Request the version number of a MicroTorque device using channel 5

byte[] request = System.Text.Encoding.ASCII.GetBytes("IV”);

bool success = MTCom.WriteSet(client, 5, request, request.Length);

if (success)

{

 byte[] reply = new byte[4096];

 // Read back the reply with a one second timeout.

 success = MTCom.ReadSet(client, 5, reply, out noBytes, 1000);

 if (success)

 {

 if (noBytes > 0)

 {

 // We have a valid dataset, display it.

System.Console.WriteLine("Reply: {0}”,

 System.Text.Encoding.ASCII.GetString(reply, 0, noBytes));

 }

 else

 {

 // Timed out.

 }

 }

}

if {!success)

{

 // Display error code.

 Console.Write("Operation failed w/err: {0}.", MTCom.GetLastError());

}

16 (26) 9836 6568 01

Retrieving summary protocol data

The following code snippet provides an example on how to retrieve a summary of a completed joint. It
is written in C# and uses the MTCom interface class that can be found later in this document.

// The application is initialized and a connection to a device is opened.

// ...

// Clear the summary data and reset sequence number to zero.

MTCom.Clear(client, 13);

int previousSequenceNo = 0;

while (applicationIsRunning)

{

 // Driver is started and the application checks that the

 // BUSY signal goes from HIGH to LOW.

 success = StartDriverAndWait(client, CHANNEL, 5000);

 // Retrieve summary for the joint

 if (success)

 {

 int sequenceNo, noBytes;

 byte[] summary = new byte[1024];

 for (int retries = 0; retries < 10; retries++)

 {

 // Attempt to retrieve a summary of the completed joint.

 if (MTCom.GetSummary(client, summary, out noBytes,

 out sequenceNo))

 {

 if (sequenceNo != previousSequenceNo)

 {

 // Summary received, display it.

 System.Console.WriteLine("Summary: {0}”,

 System.Text.Encoding.ASCII.GetString(

 reply, 0, noBytes));

 // Save sequence number for next time around.

 previousSequenceNo = sequenceNo;

 }

 }

 System.Threading.Thread.Sleep(50);

 }

 }

}

9836 6568 01 17 (26)

Retrieving trace data

The following code snippet provides an example on how to retrieve trace data after a joint has been
completed. It is written in C# and uses the MTCom interface class that can be found later in this
document.

// The application is initialized and a connection to a device is opened.

// ...

// The application detects that a joint is completed by checking

// that the BUSY signal goes from HIGH to LOW.

// ...

// Retrieve the details of the buffered trace.

int noPoints, sampleRate, torqueUnit;

success = MTCom.GetTraceInfo(handle, 0, out noPoints, out sampleRate,

 out torqueUnit);

if (success && noPoints > 0)

{

 // Retrieve the data points of the trace.

 MTCom.TracePoint[] points = new MTCom.TracePoint[noPoints];

 int maxPoints = noPoints;

 success = MTCom.GetTracePoints(handle, 0, points, 0, maxPoints,

 out noPoints);

 if (success)

 {

 // Success, display number of trace points received.

 Console.WriteLine("{0} number of points received.", noPoints);

 }

}

if {!success)

{

 // Display error code.

 Console.Write("Operation failed w/err: {0}.", MTCom.GetLastError());

}

18 (26) 9836 6568 01

MTCom interface class

This is a complete listing of the MTCom DLL interface class which can be used in custom C#
applications.

MTCom.cs

namespace MicroTorque

{

 public class MTCom

 {

 public const int SUMMARY_CHANNEL_1 = 13;

 public const int SUMMARY_CHANNEL_2 = 14;

 public const int TRACE_CHANNEL = 15;

 public enum Unit : int

 {

 MTU_mNm = 0,

 MTU_cNm,

 MTU_Nm,

 MTU_mN,

 MTU_N,

 MTU_kN,

 MTU_inlbf,

 MTU_lbf,

 MTU_inozf,

 MTU_gcm,

 MTU_kgm,

 MTU_ftlbf,

 MTU_ozf,

 MTU_kgf,

 MTU_gf,

 MTU_INVALID = -1,

 }

 public enum DeviceStatus : int

 {

 MT_DEVICE_NOT_FOUND = 0,

 MT_DEVICE_PRESENT,

 MT_DEVICE_CONNECTED,

 MT_DEVICE_READY

 }

 public enum DeviceType : int

 {

 MT_DEVICE_UNKNOWN = 0,

 MT_DEVICE_MICROTEST_MC,

 MT_DEVICE_MT_G4,

 MT_DEVICE_ACTA_MT4,

 MT_DEVICE_MTF400_BASIC,

 MT_DEVICE_MTF400_ADVANCED

 }

9836 6568 01 19 (26)

MTCom.cs continued:

 public enum ErrorCode : int

 {

 MT_OK = 0,

 MT_ERR_INVALID_VERSION = -1,

 MT_ERR_INVALID_PARAMETER = -2,

 MT_ERR_INVALID_DATA = -3,

 MT_ERR_INVALID_CHECKSUM = -4,

 MT_ERR_CONNECTION_ERROR = -5,

 MT_ERR_INVALID_MESSAGE_ID = -6,

 MT_ERR_MUTEX_TIMEOUT = -7,

 MT_ERR_PIPE_READ_FAILED = -8,

 MT_ERR_PIPE_WRITE_FAILED = -9,

 MT_ERR_USB_READ_FAILED = -10,

 MT_ERR_USB_WRITE_FAILED = -11,

 }

 [StructLayout(LayoutKind.Sequential, Pack = 1, Size = 16)]

 public struct TracePoint

 {

 [MarshalAs(UnmanagedType.R8)]

 public double torque;

 [MarshalAs(UnmanagedType.R8)]

 public double angle;

 }

 public readonly static IntPtr INVALID_HANDLE_VALUE =

 new IntPtr(-1);

 [DllImport("MTCom.dll", EntryPoint = "MT_Init")]

 public static extern bool Init();

 [DllImport("MTCom.dll", EntryPoint = "MT_GetDeviceList")]

 public static extern bool GetDeviceList(

 [MarshalAs(UnmanagedType.LPStr)] StringBuilder devices,

 [MarshalAs(UnmanagedType.I4)] out int numDevices);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetDeviceInfo")]

 public static extern bool GetDeviceInfo(

 [MarshalAs(UnmanagedType.LPStr)] string serial,

 [MarshalAs(UnmanagedType.I4)] out DeviceStatus deviceStatus,

 [MarshalAs(UnmanagedType.I4)] out DeviceType deviceType);

 [DllImport("MTCom.dll", EntryPoint = "MT_Open")]

 public static extern IntPtr Open(

 [MarshalAs(UnmanagedType.LPStr)] string serial,

 int reserved);

 [DllImport("MTCom.dll", EntryPoint = "MT_Close")]

 public static extern void Close(ref IntPtr client);

 [DllImport("MTCom.dll", EntryPoint = "MT_Clear")]

 public static extern bool Clear(IntPtr client, int channel);

 [DllImport("MTCom.dll", EntryPoint = "MT_WriteSet")]

 public static extern bool WriteSet(IntPtr client, int channel,

 [MarshalAs(UnmanagedType.LPArray)] byte[] dataset,

 int noBytes);

20 (26) 9836 6568 01

MTCom.cs continued:

 [DllImport("MTCom.dll", EntryPoint = "MT_ReadSet")]

 public static extern bool ReadSet(IntPtr client, int channel,

 [MarshalAs(UnmanagedType.LPArray)] [Out] byte[] buffer,

 [MarshalAs(UnmanagedType.I4)] out int noBytes,

 int timeOut);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetSummary")]

 public static extern bool GetSummary(IntPtr client,

 [MarshalAs(UnmanagedType.LPArray)] [Out] byte[] summary,

 [MarshalAs(UnmanagedType.I4)] out int noBytes,

 [MarshalAs(UnmanagedType.I4)] out int sequenceNo);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetNoTraceChannels")]

 public static extern bool GetNoTraceChannels(IntPtr client,

 [MarshalAs(UnmanagedType.I4)] out int noTraceChannels);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetTraceInfo")]

 public static extern bool GetTraceInfo(IntPtr client,

 int traceChannel,

 [MarshalAs(UnmanagedType.I4)] out int noPoints,

 [MarshalAs(UnmanagedType.I4)] out int sampleRate,

 [MarshalAs(UnmanagedType.I4)] out int torqueUnit);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetTracePoints")]

 public static extern bool GetTracePoints(IntPtr client,

 int traceChannel,

 [MarshalAs(UnmanagedType.LPArray)] [Out] TracePoint[] points,

 int startPoint, int maxPoints,

 [MarshalAs(UnmanagedType.I4)] out int noPoints);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetOutput")]

 public static extern bool GetOutput(IntPtr client,

 [MarshalAs(UnmanagedType.I4)] out int output);

 [DllImport("MTCom.dll", EntryPoint = "MT_GetLastError")]

 public static extern ErrorCode GetLastError();

 }

}

9836 6568 01 21 (26)

MTCom utility functions

These functions are used in some of the previous examples. They are written for a MicroTorque G4
controller and together will provide a way of starting the driver and waiting for a joint to complete.

/// <summary>

/// This function will send a command to a MicroTorque device and wait

/// for an acknowledge.

/// </summary>

static bool SendAndWaitForAck(IntPtr client, int channel, string command,

 long timeout)

{

 byte[] dataSet = System.Text.Encoding.ASCII.GetBytes(command);

 bool success, ackReceived = false;

 if (timeout < 0)

 return false;

 success = MTCom.WriteSet(client, channel, dataSet, dataSet.Length);

 if (success)

 {

 int noBytes;

 byte[] reply = new byte[4096];

 success = MTCom.ReadSet(client, channel, reply, out noBytes,

 (int)timeout);

 if (success && noBytes > 0 && reply[2] == 'A')

 ackReceived = true;

 }

 return ackReceived;

}

/// <summary>

/// This function will start a G4 driver and wait for the joint to

/// be completed.

/// </summary>

static bool StartDriverAndWait(IntPtr client, int channel, long timeout)

{

 System.Diagnostics.Stopwatch stopWatch =

 new System.Diagnostics.Stopwatch();

 bool success, jointCompleted = false;

 stopWatch.Start();

 // Reset the driver to clear any errors of previous joint

 success = SendAndWaitForAck(client, channel, "G0",

 timeout - stopWatch.ElapsedMilliseconds);

 // Start the driver

 if (success)

 {

 success = SendAndWaitForAck(client, channel, "G1",

 timeout - stopWatch.ElapsedMilliseconds);

 }

22 (26) 9836 6568 01

Utility functions continued:

 // Wait for BUSY signal to go HIGH

 while (success && stopWatch.ElapsedMilliseconds < timeout)

 {

 int output;

 success = MTCom.GetOutput(client, out output);

 if (success && (output & 0x02) != 0)

 break;

 System.Threading.Thread.Sleep(10);

 }

 // Wait for BUSY signal to go LOW

 while (success && stopWatch.ElapsedMilliseconds < timeout)

 {

 int output;

 success = MTCom.GetOutput(client, out output);

 if (success && (output & 0x02) == 0)

 {

 jointCompleted = true;

 break;

 }

 System.Threading.Thread.Sleep(10);

 }

 return jointCompleted;

}

9836 6568 01
Software release 1.0.3.1 25 (26)
2011-02
Edition 1.2

www.atlascopco.com

